3.3.31 \(\int \frac {A+B x^3}{x (a+b x^3)^{3/2}} \, dx\) [231]

Optimal. Leaf size=58 \[ \frac {2 (A b-a B)}{3 a b \sqrt {a+b x^3}}-\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {a}}\right )}{3 a^{3/2}} \]

[Out]

-2/3*A*arctanh((b*x^3+a)^(1/2)/a^(1/2))/a^(3/2)+2/3*(A*b-B*a)/a/b/(b*x^3+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {457, 79, 65, 214} \begin {gather*} \frac {2 (A b-a B)}{3 a b \sqrt {a+b x^3}}-\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {a}}\right )}{3 a^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*x^3)/(x*(a + b*x^3)^(3/2)),x]

[Out]

(2*(A*b - a*B))/(3*a*b*Sqrt[a + b*x^3]) - (2*A*ArcTanh[Sqrt[a + b*x^3]/Sqrt[a]])/(3*a^(3/2))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {A+B x^3}{x \left (a+b x^3\right )^{3/2}} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {A+B x}{x (a+b x)^{3/2}} \, dx,x,x^3\right )\\ &=\frac {2 (A b-a B)}{3 a b \sqrt {a+b x^3}}+\frac {A \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^3\right )}{3 a}\\ &=\frac {2 (A b-a B)}{3 a b \sqrt {a+b x^3}}+\frac {(2 A) \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^3}\right )}{3 a b}\\ &=\frac {2 (A b-a B)}{3 a b \sqrt {a+b x^3}}-\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {a}}\right )}{3 a^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 58, normalized size = 1.00 \begin {gather*} \frac {2 (A b-a B)}{3 a b \sqrt {a+b x^3}}-\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {a}}\right )}{3 a^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^3)/(x*(a + b*x^3)^(3/2)),x]

[Out]

(2*(A*b - a*B))/(3*a*b*Sqrt[a + b*x^3]) - (2*A*ArcTanh[Sqrt[a + b*x^3]/Sqrt[a]])/(3*a^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.33, size = 57, normalized size = 0.98

method result size
elliptic \(\frac {\frac {2 A b}{3}-\frac {2 B a}{3}}{b a \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {2 A \arctanh \left (\frac {\sqrt {b \,x^{3}+a}}{\sqrt {a}}\right )}{3 a^{\frac {3}{2}}}\) \(51\)
default \(-\frac {2 B}{3 b \sqrt {b \,x^{3}+a}}+A \left (\frac {2}{3 a \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {2 \arctanh \left (\frac {\sqrt {b \,x^{3}+a}}{\sqrt {a}}\right )}{3 a^{\frac {3}{2}}}\right )\) \(57\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^3+A)/x/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*B/b/(b*x^3+a)^(1/2)+A*(2/3/a/((x^3+a/b)*b)^(1/2)-2/3*arctanh((b*x^3+a)^(1/2)/a^(1/2))/a^(3/2))

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 70, normalized size = 1.21 \begin {gather*} \frac {1}{3} \, A {\left (\frac {\log \left (\frac {\sqrt {b x^{3} + a} - \sqrt {a}}{\sqrt {b x^{3} + a} + \sqrt {a}}\right )}{a^{\frac {3}{2}}} + \frac {2}{\sqrt {b x^{3} + a} a}\right )} - \frac {2 \, B}{3 \, \sqrt {b x^{3} + a} b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)/x/(b*x^3+a)^(3/2),x, algorithm="maxima")

[Out]

1/3*A*(log((sqrt(b*x^3 + a) - sqrt(a))/(sqrt(b*x^3 + a) + sqrt(a)))/a^(3/2) + 2/(sqrt(b*x^3 + a)*a)) - 2/3*B/(
sqrt(b*x^3 + a)*b)

________________________________________________________________________________________

Fricas [A]
time = 2.66, size = 170, normalized size = 2.93 \begin {gather*} \left [\frac {{\left (A b^{2} x^{3} + A a b\right )} \sqrt {a} \log \left (\frac {b x^{3} - 2 \, \sqrt {b x^{3} + a} \sqrt {a} + 2 \, a}{x^{3}}\right ) - 2 \, \sqrt {b x^{3} + a} {\left (B a^{2} - A a b\right )}}{3 \, {\left (a^{2} b^{2} x^{3} + a^{3} b\right )}}, \frac {2 \, {\left ({\left (A b^{2} x^{3} + A a b\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {b x^{3} + a} \sqrt {-a}}{a}\right ) - \sqrt {b x^{3} + a} {\left (B a^{2} - A a b\right )}\right )}}{3 \, {\left (a^{2} b^{2} x^{3} + a^{3} b\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)/x/(b*x^3+a)^(3/2),x, algorithm="fricas")

[Out]

[1/3*((A*b^2*x^3 + A*a*b)*sqrt(a)*log((b*x^3 - 2*sqrt(b*x^3 + a)*sqrt(a) + 2*a)/x^3) - 2*sqrt(b*x^3 + a)*(B*a^
2 - A*a*b))/(a^2*b^2*x^3 + a^3*b), 2/3*((A*b^2*x^3 + A*a*b)*sqrt(-a)*arctan(sqrt(b*x^3 + a)*sqrt(-a)/a) - sqrt
(b*x^3 + a)*(B*a^2 - A*a*b))/(a^2*b^2*x^3 + a^3*b)]

________________________________________________________________________________________

Sympy [A]
time = 7.92, size = 56, normalized size = 0.97 \begin {gather*} \frac {2 A \operatorname {atan}{\left (\frac {\sqrt {a + b x^{3}}}{\sqrt {- a}} \right )}}{3 a \sqrt {- a}} - \frac {2 \left (- A b + B a\right )}{3 a b \sqrt {a + b x^{3}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**3+A)/x/(b*x**3+a)**(3/2),x)

[Out]

2*A*atan(sqrt(a + b*x**3)/sqrt(-a))/(3*a*sqrt(-a)) - 2*(-A*b + B*a)/(3*a*b*sqrt(a + b*x**3))

________________________________________________________________________________________

Giac [A]
time = 1.22, size = 53, normalized size = 0.91 \begin {gather*} \frac {2 \, A \arctan \left (\frac {\sqrt {b x^{3} + a}}{\sqrt {-a}}\right )}{3 \, \sqrt {-a} a} - \frac {2 \, {\left (B a - A b\right )}}{3 \, \sqrt {b x^{3} + a} a b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)/x/(b*x^3+a)^(3/2),x, algorithm="giac")

[Out]

2/3*A*arctan(sqrt(b*x^3 + a)/sqrt(-a))/(sqrt(-a)*a) - 2/3*(B*a - A*b)/(sqrt(b*x^3 + a)*a*b)

________________________________________________________________________________________

Mupad [B]
time = 2.77, size = 65, normalized size = 1.12 \begin {gather*} \frac {\frac {2\,A}{3\,a}-\frac {2\,B}{3\,b}}{\sqrt {b\,x^3+a}}+\frac {A\,\ln \left (\frac {{\left (\sqrt {b\,x^3+a}-\sqrt {a}\right )}^3\,\left (\sqrt {b\,x^3+a}+\sqrt {a}\right )}{x^6}\right )}{3\,a^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x^3)/(x*(a + b*x^3)^(3/2)),x)

[Out]

((2*A)/(3*a) - (2*B)/(3*b))/(a + b*x^3)^(1/2) + (A*log((((a + b*x^3)^(1/2) - a^(1/2))^3*((a + b*x^3)^(1/2) + a
^(1/2)))/x^6))/(3*a^(3/2))

________________________________________________________________________________________